Preparation and Structure of $\{Mo_2S_8Ag_4\}(PPh_3)_4$

Contribution from the Faculty of Chemistry, University of Bielefeld, D-4800 Bielefeld, West Germany

Preparation and X-ray Crystal and Molecular Structure of $\{Mo_2S_8Ag_4\}(PPh_3)_4$, a Compound with a Metal–Sulfur Cage

A. MÜLLER,* H. BÖGGE, E. KÖNIGER-AHLBORN, and W. HELLMANN

Received April 2, 1979

 $\{Mo_2S_8Ag_4\}(PPh_3)_4\$ has been prepared by the extraction of an aqueous solution of $(NH_4)_2MoS_4$ with a solution of $(C_6H_5)_3P$ and AgNO₃ in CH₂Cl₂. The crystal and molecular structure of $\{Mo_2S_8Ag_4\}(PPh_3)_4\$ was determined from single-crystal X-ray diffractometer data. The compound crystallizes in the triclinic space group PI with one molecule in the unit cell: a = 12.246 (2), b = 12.905 (2), c = 13.211 (2) Å; $\alpha = 97.81$ (1), $\beta = 113.31$ (1), $\gamma = 91.52$ (1)°; V = 1892.1 Å³; d_{calcd} = 1.69 g cm⁻³. Anisotropic (except for the C atoms) least-squares refinement resulted in a conventional final R factor of 0.058 for 5183 independent data. The structure can be described as a cage (with a center of inversion), fused by two six-membered SAg_2S_2Mo rings which are connected by metal-sulfur bonds. Mo (106.42 (10)-112.98 (9)°) and Ag (distorted, angles varying between 92.62 (8) and 129.08 (8)°) are tetrahedrally coordinated. MoS₄²⁻ acts as a terdentate ligand.

Introduction

Considerable interest has been shown in recent years concerning polynuclear transition-metal sulfur compounds.¹ Synthetic routes for compounds containing different metal atoms linked by sulfur are of special interest.² This type of compound can be generated by thiometalates like MOS_4^{2-} or $WS_4^{2-,3}$ Whereas complexes containing a transition element with an open shell (like the thio heteroanion $[Co(WS_4)_2]^{2-4,5}$) can be classified according to the rules of classical complex chemistry, unusual coordination is found in compounds containing metals with closed d shells, e.g., $[Sn_2(WS_4)_4]^4$ (novel dimeric structure),⁶ $WOS_3Cu_3Cl(PPh_3)_3$ (cubane type structure),⁷ or $[Au_2(WS_4)_2]^{2-}$ (ring structure).⁸

In this paper the preparation and crystal structure of $\{Mo_2S_8Ag_4\}(PPh_3)_4$ (see Figure 1), a compound generated by MoS_4^{2-} and containing a metal-sulfur cage fused by two connected six-membered SAg_2S_2Mo rings, are reported.

Experimental Section

 $\{Mo_2S_8Ag_4\}(PPh_3)_4\$ was prepared by the extraction of an aqueous solution (100 mL) of 0.16 g of $(NH_4)_2MoS_4$ with a solution of 0.73 g of $P(C_6H_5)_3$ and 0.21 g of $AgNO_3$ in 25 mL of CH_2Cl_2 . Suitable crystals for the X-ray structure analysis were obtained by topping the organic phase with a mixture of acetone (10 mL) and *n*-pentane (50 mL) and keeping the two-phase system for 2–3 days. (Immediate precipitation with *n*-pentane yields 0.3 g of $\{Mo_2S_8Ag_4\}(PPh_3)_4$.) The compound, which is sparingly soluble in organic solvents such as CH_2Cl_2 , acetone, and nitromethane, shows characteristic infrared absorptions at 515 (t, $\nu(Mo-S)$), 453, and 438 cm⁻¹ (br, $\nu(Mo-S)$). The infrared spectra (Nujol mull) were measured with a Perkin–Elmer Model 180 spectrophotometer.

X-ray Structure Determination⁹

The molecular structure of $\{Mo_2S_8Ag_4\}(PPh_3)_4$ was determined from a single-crystal X-ray structure analysis. A summary of the crystal data and details concerning the intensity data collection is given in Table I. The unit cell parameters were obtained at 22 °C by a least-squares refinement of the angular settings of eight high-angle reflections. Intensity data were collected on a Syntex $P2_1$ four-circle diffractometer. No absorption correction had to be applied. The data were corrected for Lorentz and polarization effects.

The Mo and Ag atoms were located from a three-dimensional Patterson synthesis. The positional parameters of the remaining nonhydrogen atoms were deduced from successive difference-Fourier syntheses. Several cycles (with the carbon atoms being refined independently) converged at $R = \sum ||F_0| - |F_c|| / \sum |F_0| = 0.058$ and $R_w = [\sum w(|F_0| - |F_c|)^2 / \sum w|F_0|^2]^{1/2} = 0.054 (1/w = \sigma^2(F_0)^2).$

Table I. Summary of Crystal Data and Intensity Data Collection for $(Mo_2S_8Ag_4)$ (PPh₃)₄

a, Å 12.246 (2) b, Å 12.905 (2) c, Å 13.211 (2) a, deg 97.81 (1) β , deg 113.31 (1) γ , deg 91.52 (1) V, Å ³ 1892 d_{calcd} , g 1.69 cm ⁻³ Z 1	F(000), e cryst system space group cryst dimens, mm abs coeff μ (Mo K α), cm ⁻¹ fw empirical formula	952 triclinic $P\overline{1}$ 0.3 × 0.25 × 0.3 16.4 1929.0 $C_{72}H_{60}Ag_4Mo_2P_4S_8$
radiation	graphite-monoch 0.710 69 Å)	romated Mo K α (λ
data collecn	2θ-θ mode; 2θ r 1° below Kα ₁ scan speed 2.9 scan time ratio 50 rflctns	ange 4-50°; scan from to 1° above $K\alpha_2$ in 2 θ ; 3-29.3°/min; bkgd 0.75; ref rflctn every
no. of measd rflctns $((\sin \theta)/\lambda < 0.59 \text{ Å}^{-1})$	6697	
no. of obsd rflctns ($I \ge 1.96 \sigma(I)$)	5183	
no. of variables	226	

During the last cycles of refinement the temperature factors of all atoms (except for the carbon atoms) were treated in the anisotropic form. In the final stage of refinement, no parameter shifted more than 0.12σ , where σ is the standard deviation of the parameter.

The atomic scattering factors for Mo, Ag, S, P, and C were taken from ref 10. Anomalous dispersion corrections were applied to the Mo, Ag, and S atoms. The final ΔF map contained no significant peaks. The final positional and thermal parameters are given in Table II. A list of observed and calculated structure factors is available.¹¹

Results and Discussion

The structure consists of one molecule, $\{Mo_2S_8Ag_4\}(PPh_3)_4$, per unit cell. The interatomic distances are given in Table III. Bond angles are collected in Table IV. The molecule has $\overline{1}$ symmetry according to the exact crystallographic $\overline{1}$ site symmetry (center of inversion at (0, 1/2, 0)). Figure 2 shows the heavy-atom skeleton of the molecular structure, with a cage fused by two six-membered SAg_2S_2Mo rings which are connected by nearly parallel Ag–S and Mo–S bonds, respectively. The molybdenum atoms are tetrahedrally coordinated (106.42 (10)–112.98 (9)°), whereby the angles between the terminal and the bridging Mo–S bonds are smaller

Table II. Positional and Thermal $(\mathbb{A}^2)^a$ Parameters for $\{Mo_2S_8Ag_4\}$ (PPh₃)₄ with Standard Deviations

				2 8 04 5	3-4				
atom	x	У	Z	B ₁₁	B 22	B ₃₃	B ₁₂	B ₁₃	B 23.
Mo	0.0345 (1)	0.3648 (1)	0.1201(1)	2.75 (3)	2.63 (3)	2.74 (3)	0.35 (2)	0.90 (3)	0.79 (2)
S 1	-0.0560(2)	0.4872 (2)	0.1873 (2)	3.42 (10)	3.29 (10)	4.30 (11)	0.47 (8)	2.03 (9)	0.82 (8)
S 2	-0.0818(2)	0.2994 (2)	-0.0542(2)	3.04 (10)	3.81 (11)	3.28 (10)	-0.29 (8)	0.88 (8)	0.62 (8)
S 3	0.2174 (2)	0.4238 (2)	0.1414 (2)	2.72 (10)	4.45 (11)	3.42 (10)	0.21 (9)	0.90 (8)	0.05 (9)
S4	0.0547 (3)	0.2423 (2)	0.2150 (2)	6.47 (16)	4.44 (13)	5.13 (14)	1.27 (12)	2.02 (12)	2.27 (11)
Ag1	0.1144 (1)	0.3604 (1)	-0.0675 (1)	3.39 (3)	4.72 (4)	3.75 (3)	0.55 (3)	1.59 (3)	0.28 (3)
Ag2	0.1447 (1)	0.5799 (1)	0.2242 (1)	3.50 (3)	3.39 (3)	4.63 (4)	-0.23 (3)	0.81 (3)	-0.21 (3)
P 1	0.2354 (2)	0.2398 (2)	-0.1269 (1)	3.17 (11)	3.77 (11)	3.82 (11)	0.69 (9)	1.56 (9)	0.95 (9)
P2	0.2750 (2)	0.7009 (2)	0.3852 (2)	3.16 (10)	3.05 (10)	3.19 (10)	0.16 (8)	0.81 (9)	0.41 (8)
atom	x	у	Z	<i>B</i> , Å ²	atom	x	у	Z	<i>B</i> , Å ²
C1	0.2431 (8)	0.1158 (7)	-0.0728 (7)	4.2 (2)	C19	0.4306 (8)	0.6677 (7)	0.4439 (7)	3.7 (1)
C2	0.1443 (8)	0.0747 (8)	-0.0604(8)	5.2 (2)	C20	0.4688 (9)	0.6062 (8)	0.3720 (8)	5.5 (2)
C3	0.1459 (10)	-0.0226 (9)	-0.0237 (9)	6.3 (3)	C21	0.5938 (11)	0.5808 (9)	0.4179 (10)	7.1 (3)
C4	0.2422 (10)	-0.0768 (9)	0.0015 (9)	6.6 (3)	C22	0.6651 (10)	0.6192 (9)	0.5294 (9)	6.6 (3)
C5	0.3379 (12)	-0.0455 (11)	-0.0220 (12)	9.2 (4)	C23	0.6220 (10)	0.6748 (9)	0.5948 (9)	6.5 (3)
C6	0.3383 (11)	0.0564 (11)	-0.0567 (11)	8.1 (3)	C24	0.5020 (10)	0.7026 (8)	0.5566 (9)	5.6 (2)
C7	0.1835 (8)	0.2037 (7)	-0.2768 (8)	4.6 (2)	C25	0.2334 (9)	0.7136 (7)	0.5050 (8)	4.8 (2)
C8	0.1423 (10)	0.2784 (8)	-0.3449 (9)	5.9 (3)	C26	0.1794 (9)	0.6217 (8)	0.5180 (8)	5.4 (2)
C9	0.1021 (11)	0.2540 (9)	-0.4605 (10)	7.3 (3)	C27	0.1576 (11)	0.6249 (9)	0.6164 (10)	7.1 (3)
C10	0.1089 (14)	0.1604 (12)	-0.5069 (13)	10.8 (5)	C28	0.1882 (11)	0.7116 (10)	0.6928 (10)	7.6 (3)
C11	0.1290 (20)	0.0752 (17)	-0.4461 (18)	17.0 (7)	C29	0.2363 (11)	0.8030 (10)	0.6796 (10)	7.4 (3)
C12	0.1828 (16)	0.1011 (13)	-0.3239 (14)	12.2 (5)	C30	0.2630 (10)	0.8050 (9)	0.5814 (9)	6.3 (3)
C13	0.3904 (8)	0.2889 (7)	-0.0798 (7)	4.2 (2)	C31	0.2821 (8)	0.8346 (7)	0.3558 (7)	4.0 (2)
C14	0.4520 (10)	0.2719 (9)	-0.1486 (9)	6.3 (3)	C32	0.1746 (9)	0.8789 (7)	0.3139 (8)	4.7 (2)
C15	0.5761 (11)	0.3095 (9)	-0.1051 (10)	7.4 (3)	C33	0.1751 (10)	0.9800 (9)	0.2838 (9)	6.5 (3)
C16	0.6248 (11)	0.3667 (9)	-0.0059 (10)	7.3 (3)	C34	0.2781 (11)	1.0299 (9)	0.2946 (10)	7.2 (3)
C17	0.5743 (13)	0.3825 (11)	0.0677 (12)	9.7 (4)	C35	0.3873 (12)	0.9864 (10)	0.3342 (10)	7.9 (3)
C18	0.4462 (11)	0.3436 (10)	0.0249 (10)	7.6 (3)	C36	0.3909 (10	0.8830 (8)	0.3675 (9)	6.2 (3)

^a The anisotropic temperature factor used is defined as $\exp[-\frac{1}{4}(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}\cdot klb^*c^*)]$.

Table III. Interatomic Distances (A) in $\{Mo_2S_8Ag_4\}(PPh_3)_4$ with Standard Deviations^4

	A. Mo-S, Ag-S, an	id Ag-P Distan	ces
Mo-S1	2.235 (3)	Ag1-S3	2.540 (2)
Mo-S2	2.204 (2)	Ag1P1	2.438 (3)
Mo-S3	2.243 (3)	Ag2-S1	2.538 (3)
Mo-S4	2.108 (3)	Ag2-S2a	2.777 (2)
Ag1-S1a ^a	2.629 (2)	Ag2-S3	2.513 (3)
Ag1-S2	2.587 (3)	Ag2-P2	2.406 (2)
	B. Molvbdenum-	Silver Distance	es
Mo…Ag1	2.998 (1)	Mo…Ag2	2.952 (1)
•	C Sulfur-Sulf	- Fur Distances	
\$1\$2	3 635 (3)	\$2\$3	3 707 (3)
\$1\$3 '	3.033(3)	\$2\$4	3.707(3)
\$1\$4	3.722(4) 3.479(4)	\$3\$4	3.472(3)
51	5.4/5(4)	3334	5.508 (4)
	D. Phosphorus-C	arbon Distance	es
P1-C1	1.830 (9)	P2-C19	1.839 (10)
P1-C7	1.812 (10)	P2-C25	1.834 (10)
P1-C13	1.812 (11)	P2-C31	1.826 (9)
	E. Carbon-Car	bon Distances	
C1-C2	1.384 (16)	C19-C20	1.384 (14)
C2-C3	1.404 (15)	C20-C21	1.472 (18)
C3-C4	1.336 (18)	C21-C22	1.392 (16)
C4-C5	1.389 (21)	C22-C23	1.324 (17)
C5-C6	1.451 (19)	C23-C24	1.426 (18)
C6-C1	1.374 (18)	C24-C19	1.398 (13)
C7-C8	1.376 (14)	C25-C26	1.406 (15)
C8C9	1.393 (16)	C26-C27	1.422 (17)
C9-C10	1.298 (20)	C27-C28	1.337 (17)
C10-C11	1.419 (27)	C28-C29	1.367 (18)
C11-C12	1.466 (27)	C29-C30	1.461 (17)
C12-C7	1.383 (20)	C30-C25	1.382 (15)
C13-C14	1.393 (16)	C31-C32	1.384 (15)
C14-C15	1.439 (19)	C32-C33	1.415 (15)
C15-C16	1.308 (17)	C33-C34	1.347 (19)
C16-C17	1.341 (21)	C34-C35	1.394 (20)
C17-C18	1.486 (22)	C35-C36	1.457 (17)
C18-C13	1.356 (15)	C36-C31	1.399 (16)

^a The index a refers to the transformation $\overline{x}, \overline{y}, \overline{z}$.

than the angles between the bridging bonds. The terminal Mo-S bond (2.108 (3) Å) in the terdentate MoS_4^{2-} ligand is

Figure 1. Stereochemistry of the $\{Mo_2S_8Ag_4\}(PPh_3)_4$ molecule.

Figure 2. Heavy-atom skeleton of $\{Mo_2S_8Ag_4\}(PPh_3)_4$ (ORTEP diagram; 50% atomic vibration ellipsoids). The index a refers to the transformation \bar{x} , \bar{y} , \bar{z} .

significantly shorter than the bridging Mo-S bonds (2.204 (2)-2.243 (3) Å). The coordination polyhedron of Ag is a

Table IV. Bond Angles (deg) in $\{Mo_2S_8Ag_4\}(PPh_3)_4$ with Standard Deviations^a

۵ ۸.	ales within M	SAG P Cage		
S1MoS2	100 02 /0)	$S_2 S_8 R E_4 I_4 Cage = S_1 - \Delta_3 2 - S_2 A^2 = S_2 A$	101 42 (8)	
51-Mo 52	112 46 (0)	S1 A~2 S2	04 04 (8)	
51-M0-55	112.46 (9)	S1-Ag2-S5	94.94 (0)	
S1-M0-54	106.42 (10)	SI-Ag2-P2	129.08 (8)	
S2-Mo-S3	112.98 (9)	S2a-Ag2-S3	101.32 (8)	
S2-Mo-S4	107.24 (10)	S2a-Ag2-P2	103.06 (8)	
S3-Mo-S4	107.44 (10)	S3-Ag2-P2	122.51 (8)	
S1a-Ag1-S2	104.22 (8)	Mo-S1-Ag1a	112.44 (10)	
S1a-Ag1-S3	113.84 (8)	Mo-S1-Ag2	76.10 (8)	
S1a-Ag1-P1	112.03 (8)	Ag1a-S1-Ag2	76.80 (7)	
S2-Ag1-S3	92.62 (8)	Mo-S2-Ag1	77.03 (7)	
S2-Ag1-P1	123.03 (8)	Mo-S2-Ag2a	122.15 (10)	
S3-Ag1-P1	109.87 (8)	Ag1-S2-Ag2a	73.43 (6)	
	(-)	Mo-S3-Ag1	77.36 (8)	
		Mo-S3-Ag2	76.50 (8)	
		Ag1-S3-Ag2	118 50 (10)	
		AB1-00-AB2	110.50 (10)	
BS	liver-Phospho	rus-Carbon Angle	8	
$\Delta_{\alpha}1_{-}P1_{-}C1^{\circ}$	112 76 (32)	$\Delta \alpha 2 = P^2 = C^{10}$	114 36 (30)	
$Ag1_P1_C7$	112.70(32) $114 \ 11(34)$	Ag2-12-C15	114.00(30) 115.05(34)	
$Ag_1 = F_1 = C_7$	114.41(34) 114.20(27)	Ag2-F2-C23	113.03(34) 112.61(31)	
Agi-ri-Cis	114.30 (32)	Ag2=F2=C31	112.01 (51)	
C C	whon Dhounh	rus Carbon Anal	00	
C1 P1 C7	105 50 (45)	C10 D2 C25	103 52 (44)	
C1 - F1 - C/	103.30(43) 102.02(44)	C19 - F2 - C23	105.52(44) 105.54(40)	
C1 - P1 - C13	103.93 (44)	C19 - P2 - C31	103.34(42)	
C/-PI-CI3	104.92 (43)	C25-P2-C51	104.09 (43)	
וים רז	oenhorus_Car	hon-Cathon Angl	es.	
	110 0 (0)	DOII-Caroon Angi	1167(7)	
P1-C1-C2	110.7(0)	P2-C19-C20	110.7(7)	
P1-C1-C0	121.7 (0)	P2-C19-C24	115.4 (7)	
PI-C/-C8	119.9 (8)	P2-C25-C26	115.5 (0)	
PI-C/-CI2	120.6 (10)	P2-C25-C30	121.4 (8)	
P1-C13-C14	121.5 (8)	P2-C31-C32	116.4 (7)	
P1-C13-C18	118.5 (8)	P2-C31-C36	119.8 (8)	
E. In	ternal Angles of	of the Phenyl Rin	gs	
C6-C1-C2	118.9 (10)	C24-C19-C20	123.9 (9)	
C1-C2-C3	120.1 (9)	C19-C20-C21	117.0 (9)	
C2C3C4	121.3 (11)	C20-C21-C22	118.5 (11)	
C3C4C5	120.7 (12)	C21-C22-C23	121.6 (12)	
C4-C5-C6	117.6 (13)	C22-C23-C24	123.3 (11)	
C5C6C1	120.5 (12)	C23-C24-C19	115.7 (10)	
C12-C7-C8	119.5 (12)	C30-C25-C26	123.0 (10)	
C7-C8-C9	121.8 (11)	C25-C26-C27	117.1(10)	
C8-C9-C10	120.3(13)	C26-C27-C28	120 9 (12)	
C_{10}	120.5(13)	C_{27} C_{28} C_{29}	122.8 (13)	
C_{10}	120.7(17) 1170(19)	C_{28}	122.0(13)	
C10-C11-C12	117.0(15) 117.0(15)	$C_{20} - C_{20} - C_{30}$	1160(11)	
C11 - C12 - C7	117.0(10)	$C_{29} = C_{30} = C_{23}$	10.9 (11)	
	120.0 (10)	$C_{20} - C_{21} - C_{22}$	110.2 (10)	
014-014-015	118.9 (11)	031-032-033	118.3 (10)	
C14-C15-C16	119.0 (12)	C32-C33-C34	120.1 (11)	
C15-C16-C17	125.7 (13)	C33-C34-C35	123.1 (12)	
C16-C17-C18	115.6 (13)	C34-C35-C36	118.6 (12)	
C17-C18-C13	120.1 (12)	C35-C36-C31	116.4 (10)	

^a The index a refers to the transformation $\overline{x}, \overline{y}, \overline{z}$.

distorted tetrahedron $(92.62 (8)-129.08 (8)^\circ)$, the terminal position being occupied by the triphenylphosphine ligand.

The bond lengths and angles in the $P(C_6H_5)_3$ ligand are, within the limit of error, in close agreement with literature data.¹² The average P-C distance (1.826 Å) and C-C bond length of 1.394 Å compare with mean values such as 1.821 and 1.373 Å in triphenylphosphine complexes.¹² There is also no significant deviation from planarity observable in the phenyl rings (see Table V).

rings (see Table V). As ions like MoS_4^{2-} and WS_4^{2-} can act as bi-, ter-, and tetradentate ligands in forming interesting polynuclear transition-metal compounds, it is worthwhile discussing the dependence of the metal-sulfur bond length on the type of coordination. In Table VI the bond distances in the free ions have been compared with those observed for the terminal and chelating bonds in polynuclear compounds. (All regularities are valid for molybdenum as well as tungsten compounds, as

Table V.	Weighted	Least-Squares	Planes	within	the
Mo.S. Ag	{PPh,)	Molecule ^{a, b}	1.1		

10	$10_{2}0_{8}$ Rg_{4} $J(1111_{3})_{4}$ molecule						
	atom	dev, A	atom	dev, A			
	Plane I: 0.	0163X + 0.3102	Y + 0.95052	2 + 0.2961 = 0			
	C1*	-0.029	C5*	0.054			
	C2*	0.023	C6*	0.017			
	C3*	0.018	P 1	0.056			
	C4*	-0.053					
	Plane II: 0	.9797X + 0.1856	5Y + 0.0760	Z - 3.8717 = 0			
	C7*	-0.015	C11*	0.130			
	C8*	0.015	C12*	-0.010			
	C9*	0.019	P1	-0.027			
	C10*	-0.083					
	Plane III: (0.1798X - 0.9189	9Y + 0.3512	Z + 2.9839 = 0			
	C13*	0.001	C17*	-0.032			
	C14*	0.010	C18*	0.002			
	C15*	-0.034	P1	-0.005			
	C16*	0.040					
	Plane IV: (0.3927X + 0.884	9Y - 0.2504	Z - 6.5878 = 0			
	C19*	0.013	C23*	-0.006			
	C20*	-0.011	C24*	-0.011			
	C21*	-0.006	P2	0.037			
	C22*	0.015					
	Plane V: 0	0.7907X - 0.3806	Y + 0.47952	Z + 0.2601 = 0			
	C25*	-0.008	C29*	0.018			
	C26*	0.008	C30*	-0.001			
	C27*	0.005	P2	-0.195			
	C28*	-0.021					
	Plane VI:	0.2435X - 0.277	2 <i>Y -</i> 0.92942	Z + 6.4295 = 0			
	C31*	-0.007	C35*	0.008			
	C32*	0.008	C36*	0.002			
	C33*	-0.003	P2	0.113			
	C34*	-0.007					

^a The calculation was performed by using the program PLANE from the Syntex XTL program package. ^b Coordinates of atoms marked with asterisks were used to define the planes.

 Table VI.
 Average Metal-Sulfur Bond Distances (Å) in

 Thiometalate Complexes
 \$\$

	all		all
WS4 ²⁻ ion	bonds ref	MoS ₄ ²⁻ ion	bonds ref
in Cs ₂ WS ₄	2.189 13	in Cs2MoS4	2.182 13
in (NH_4) , WS_4	2.177 13	in (GuH), MoS ₄ ^a	2.186 13
in $(NH_4)_2^2WS_4$	2.165 14	in $(NH_4)_2 MoS_4$	2.178 15
	<u> </u>	chela- ter-	all
compd	coordination	ting minal bo	nds ref
$[Co(WS_4)_2]^{2-}$	bidentate	2.219 2.139 2.	179 5
$[Zn(WS_4)_2]^{2^-}$	bidentate	2.233 2.156 2.	195 16
$[Au_{4}(WS_{4}),]^{2}$	bidentate	2.243 2.136 2.	190 8
$[Ni(MoS_4),]^{2-}$	bidentate	2.227 2.151 2.	189 17
$[Sn_{a}(WS_{a})_{a}]^{4-}$	bidentate	2.231 2.154 2.	193 6
$\{W_2S_8Ag_4\}$	terdentate	2.234 2.121 2.	206 18
(PPh ₃) ₄			
$\{Mo_2S_8Ag_4\}$ -	terdentate	2.227 2.108 2.	198 this
$(PPh_3)_4$			work
$(PPh_3)_3Ag_2WS_4$	tetradentate	2.206 2.	206 19
(Ph, PCH ₃),-	tetradentate	2.219 2.	219 20
Au, WS			

^a Gu stands for guanidine.

the corresponding bond distances are very similar.)

As expected, the terminal bonds in the MoS₄ and WS₄ tetrahedra are shorter than those in the chelating ones, whereby the average bond distances are in good agreement with those of the free ions (see Table VI). The terminal bond of a terdentate thiometalate ligand is shorter than that of a bidentate ligand, as in the former the predominant π -electron density is located in *one bond* only.

Whereas thiometalate complexes like $[Co(WS_4)_2]^{2-5}$ containing a transition element with an open d shell as central

atom, can be classified from the structural point of view according to the rules of classical complex chemistry, interesting transition-metal ring and cage systems are found in compounds containing metals with closed d shells. Especially remarkable are compounds with Cu⁺ and Ag⁺ (being very soft acids and having a high tendency to form metal-sulfur bonds), toward which MoS_4^{2-} and WS_4^{2-} act preferably as terdentate or tetradentate ligands.

Acknowledgment. We thank M. Dartmann for her assistance and the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen for financial support.

Registry No. $\{Mo_2S_8Ag_4\}(PPh_3)_4, 70368-92-2; (NH_4)_2MoS_4,$ 15060-55-6.

Supplementary Material Available: Listing of structure factor amplitudes (18 pages). Ordering information is given on any current masthead page.

References and Notes

(1) H. Vahrenkamp, Angew. Chem., Int. Ed. Engl., 14, 322 (1975).

- (2) T. E. Wolff, J. M. Berg, C. Warrick, K. O. Hodgson, R. H. Holm, and I. E. Wolff, J. M. Berg, C. Warrick, N. O. Hougson, K. H. Honn, and R. B. Frankel, J. Am. Chem. Soc., 100, 4630 (1978); G. Christou, C. D. Garner, and F. E. Mabbs, J. Chem. Soc., Chem. Commun., 740 (1978).
 E. Diemann and A. Müller, Coord. Chem. Rev., 10, 79 (1973).
 A. Müller and S. Sarkar, Angew. Chem., Int. Ed. Engl., 16, 705 (1977).

- (5) A. Müller, N. Mohan, and H. Bögge, Z. Naturforsch., B, 33, 978 (1978).
 (6) A. Müller, I. Paulat-Böschen, B. Krebs, and H. Dornfeld, Angew. Chem., A. Müller, T. K. Hwang, and H. Bögge, Angew. Chem., in press.
 A. Müller, H. Dornfeld, G. Henkel, B. Krebs, and M. P. Viegers, Angew.
- Chem., Int. Ed. Engl., 17, 52 (1978).
- All computations were performed by using programs from the Syntex (9) XTL structure-determination package.
- (10) "International Tables for X-ray Crystallography", Vol. IV, Kynoch Press, Birmingham, England, 1974.
- Supplementary material. (11)
- (12) M. R. Churchill and K. L. Kalra, Inorg. Chem., 13, 1065 (1974).
- A. Müller, N. Mohan, and M. Dartmann, to be submitted for publication. (13)
- (14) K. Sasvari, Acta Crystallogr., 16, 719 (1963).
- J. Lapasset, N. Chezeau, and P. Belougne, Acta Crystallogr., Sect. B, (15)32, 3087 (1976).
- (16) I. Paulat-Böschen, B. Krebs, A. Müller, E. Königer-Ahlborn, H. Dornfeld, and H. Schulz, Inorg. Chem., 17, 1440 (1978)
- I. Søtofte, Acta Chem. Scand., Ser. A, 30, 157 (1976).
- (18)A. Müller, H. Bögge, and E. Königer-Ahlborn, J. Chem. Soc., Chem. Commun., 739 (1978).
- (19)A. Müller, H. Bögge, and E. Königer-Ahlborn, to be submitted for publication.
- (20) J. C. Huffman, R. S. Roth, and A. R. Siedle, J. Am. Chem. Soc., 98, 4340 (1976).

lotes

Contribution from the Department of Chemistry, Syracuse University, Syracuse, New York 13210

Electrochemical Investigations of Some Azo Macrocyclic Ligands and Their Nickel(II) Complexes

James C. Dabrowiak,* Diane P. Fisher, Francis C. McElroy, and Daniel J. Macero

Received December 21, 1978

Introduction

The redox properties of transition-metal complexes containing synthetic macrocyclic ligands have been actively investigated.¹⁻⁹ Unlike the porphyrins, synthetic cyclic structures, especially those based on a Schiff-base reaction, offer a wide assortment of macrocyclic ring sizes, with a variety of types and degrees of unsaturation. These features, combined with the fact that macrocyclic complexes are generally more resistant toward demetallation than are their acyclic counterparts, make this class of compounds useful agents for exploring the relationship between ligand structure and metal oxidation state. Redox transformations which are necessary to explore this relationship do not normally lead to complex decomposition. We reported earlier⁸ on a series of Mn(III) complexes containing the macrocyclic Schiff base 1. Electrochemical oxidation of compounds having stoichiometry

 $Mn^{III}-1(X)$, where X is Cl⁻, Br⁻, SCN⁻, and N₃⁻, did not lead to Mn(IV) complexes but lead instead to cation radicals containing an oxidized form of the ligand. Ligand oxidation also occurs if the bound metal ion is Ni(II), but in this case the cation radical which is formed rapidly dimerizes to form a dinuclear macrocyclic complex.⁹ The dimer contains two macrocyclic units which are joined via the γ position of the diiminate framework. Although ligand oxidation has been observed for other tetraaza diiminate frameworks,^{3,4} at least one group of diiminate compounds similar in structure to 1 sustain a metal-centered oxidation in preference to a ligand oxidation.^{1,5} In an attempt to more clearly define the various factors which influence the site at which a redox process will take place within this type of macrocyclic structure, we have examined the electrochemical properties of the two methine-substituted macrocyclic ligands 2 and 3 and their nickel complexes Ni^{II}-2 and Ni^{II}-3.¹⁰ Since the latter two compounds contain three distinct groups, which are potentially polarographically active, the metal ion, the macrocyclic ligand, and the azo chromophore, we have also investigated the electro-